A lower bound for polynomial multiplication
نویسندگان
چکیده
منابع مشابه
Optimal Complexity Lower Bound for Polynomial Multiplication
We prove lower bounds of order n logn for both the problem of multiplying polynomials of degree n, and of dividing polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the li...
متن کاملA Lower Bound for Matrix Multiplication
We prove that computing the product of two 11 X 11 matrices over the binary field requires at least 2.5 11:1 0 (11:1) multiplications.
متن کاملA Depth-Five Lower Bound for Iterated Matrix Multiplication
We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials with N variables and degree n require NΩ( √ n) gates when expressed as a homogeneous depth-five ΣΠΣΠΣ arithmetic circuit with the bottom fan-in bounded by N1/2−ε. By a depth-reduction result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of homogeneous depth-fo...
متن کاملStrassen’s lower bound for polynomial evaluation and Bezout’s theorem
Strassen’s lower bound for polynomial evaluation and Bezout’s theorem Recall Strassen’s algorithm from the previous lecture: Given: (a0, . . . , an−1), (x1, . . . , xn) ∈ K, and polynomial p(x) = ∑n−1 i=0 aix i Task: find (z1, . . . , zn), zi = p(xi) How many steps do we need to accomplish this task? Using the Fast Fourier Transform (FFT) we need O(n log n) steps. Strassen was interested whethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1985
ISSN: 0304-3975
DOI: 10.1016/0304-3975(85)90174-4